The central limit theorem explains why it is so critical to understand the normal distribution.
Suppose we have a population set of data. It has a mean, µ, and a standard deviation, σ. If we created a histogram for this data, it could be uniform, or skewed or bimodal, or whatever.
The central limit theorem says that if we determine the mean of many samples (n > 30 is best) and make a new histogram, it will be normal! The new mean of these samples is the same as the original mean of the population and the new standard deviation of these samples is the standard deviation of the population divided by the square root of n.
Go to this website. http://onlinestatbook.com/stat_sim/sampling_dist/
This allows us to run virtual sampling distributions. The top histogram is our population. If gives the options of uniform, normal, skew, or custom.
Initial Post:
Choose CUSTOM and use the mouse to trace your own distribution (just don’t make it a normal distribution). The whole point of this is to see that even if the population is not normal, the sampling distribution will in fact be normal (if N > 30 or even if N > 25…) .
On the third graph down, select N=25. This will select 25 items from the population, then plot the sample mean on the graph.
Hit ANIMATE on the second graph once to see this happen once. Then hit “5” to see it done 5 times, then hit “10,000” to see the process repeated that many times. Now you should hopefully see that the sampling distribution graph (third one down) is now approximately normal!
At this point, take a SCREENSHOT of the top three graphs, including the statistics to the left (see my example post as an example). If you don’t know how to take a screenshot, use Google to learn how with either a Mac or Windows.
You will POST YOUR SCREENSHOT into the discussion board. You’ll need to resize it to make it smaller, but still legible.
Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.
You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.
Read moreEach paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.
Read moreThanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.
Read moreYour email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.
Read moreBy sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.
Read more