Modular Arithmetic

One  can  always  say, ‘ it  is  7.00  p.m.’ and  the  same  fact  can  be  also  put  as  ‘ it is  19.00 ’. If  the  truth  underlying  these  two  statements  is  understood  well, one  has understood  ‘ modular mathematics ‘  well.
The  conventional  arithmetic  is  based  on  linear  number  system  known  as  the ‘ number  line’.  Modular  Arithemetic  was  introduced  by  Carl  Friedrich  Gauss  in  1801, in  his  book ‘ Disquisitiones  Arithmeticae’. (modular).  It  is  based  on  circle.  A  circle  can  be  divided  into  any  number  of  parts. Once  divided, each  part  can  be named  as  a  number, just  like  a  clock, which  consists  of  12  divisions  and  each division  is  numbered  progressively. Usually, the  starting  point  is  named  as ‘0’. So,the  starting  point  of  a  set  of  numbers  on  a  clock  is  ‘0’  and  not  ‘1’. Since  the divisions   are 12, all  integers, positive  or  negative, which  are  multiples  of  12, will always  be  corresponding  to  0,  on  the  clock. Hence, number  18  on  a  clock corresponds  to  18/12 . Here  the  remainder  is  6,  so  the  answer  of  13 + 5  will  be  6
Similarly, the  same  number 18, on  a  circle  with  5  divisions  will  represent  number 3, as  3  is  the  remainder  when  18  is  divided  by  5.Some  examples  of  addition  and  multiplication  with  mod  (5):

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper

1)      6  +  5  = 11. Now  11/5  gives  remainder  1. Hence  the  answer  is  1.
2)      13  +  35 = 48. Now, 48/5  gives  3  as  remainder. Hence  the  answer  is  3.
3)      9  +  ( -4) = 5. Now  5/5  gives  0  as  remainder. Hence  the  answer  is  0.
4)  14  +  ( – 6 ) = 8 . Now  8/5  gives  3  as  remainder. So  the  answer  is  3.
Some examples of multiplication with mod ( 5 ).
1.      6  X  11 = 66. Now, 66/5  gives  1  as  remainder. So  the  answer  is  1.
2.      13 X 8 = 104. Now  104/5  gives  4  as  remainder . So  the  answer  is  4
3.      316 X – 2 = -632. Now, 632/5  gives  2 as  remainder. For negative
numbers  the  calculation  is  anticlockwise. So , for negative numbers, the answer  will  be  numbers  of  divisions  (mod)  divided  by  the  remainder.Here the  answer  will be 3.
4.      13 X –7 = – 91. Now, 91/5  gives 1 as remainder. But, the answer will be
5 – 1 = 4. So  the  answer  is  4.
Works-cited page
1.      Modular, Modular Arithmetic, wikipedia the free encyclopedia, 2006,
Retrieved on  19-02-07 from
< http://en.wikipedia.org/wiki/Modular_arithmetic>
2.      The entire explanation is based on a web page available at ,
< http://www.csub.edu/~ychoi2/MIS%20260/NotesJava/chap13/ch13_4.html>
Additional  information: An  automatic  calculator  of  any  type  of  operations  with  any numbers  in  modular  arithmetic  is  available  on  website:
< http://www.math.scub.edu/faculty/susan/faculty/modular/modular.html >

Place your order
(550 words)

Approximate price: $22

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
$26
The price is based on these factors:
Academic level
Number of pages
Urgency
Basic features
  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support
On-demand options
  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading
Paper format
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our Guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Read more

Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

Read more

Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Read more

Privacy policy

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Read more

Fair-cooperation guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Read more

Online Class Help Services Available from $100 to $150 Weekly We Handle Everything