For this Knowledge Assessment, you calculate the concurrent validity coefficient between a predictor scale and criterion measure in the dataset provided. First, you will be guided through the process of how to create new variable scales. Then, you calculate the validity measure on one of the scales.
The MoneyData.sav dataset that you have been provided contains three scales that measure financial attitudes:
LIFESTYLE (L1 to L6) measures the desire for a luxurious lifestyle
DEPENDENCE (D1 to D6) measures the tendency to depend on others for financial support (high scores) vs. supporting others (low scores)
RISKTAKING (R1 to R6) measures the tendency to take financial risks in investments and careers
Create Three New Variables Showing the Scores on These Three Scales
To create the RISKTAKING scale, click on TRANSFORM>COMPUTE VARIABLE. In the “Target Variable” field, type “RISKTAKING.” In the “Numeric Expression” field, type SUM(R1 TO R6).
To create the DEPENDENCE scale, click on TRANSFORM>COMPUTE VARIABLE. In the “Target Variable” field, type “DEPENDENCE.” In the “Numeric Expression” field, type SUM(D1 TO D6).
On the LIFESTYLE items, item L6 (“I’d rather have a modest lifestyle because it is less stressful”) is scored in the reverse direction from the other items. People endorsing this item want a less extravagant lifestyle; endorsing the other items suggests the desire for a more extravagant lifestyle. The scoring on this item needs to be reversed. To create the reversed L6 item, click on TRANSFORM>COMPUTE VARIABLE. In the “Target Variable” field, type “L6R.” In the “Numeric Expression” field, type “6 – L6.” By subtracting the item responses from six, they are reversed: 5 becomes 1, 4 becomes 2, etc. To create the LIFESTYLE scale, click on TRANSFORM>COMPUTE VARIABLE. In the “Target Variable” field, type “LIFESTYLE.” In the “Numeric Expression” field, type SUM(L1 TO L5, L6R).
Calculate a Validity Measure for One of the Scales
There are a number of other variables in the data file, such as income, sex, age, and marital status. Create a hypothesis about an expected correlation. Here is an example: You might expect financially dependent people to have lower incomes. So, you would predict a negative correlation between DEPENDENCE and participant income (INC1). If you use SPSS to calculate the correlation between dependence and income, (ANALYZE>CORRELATE>BIVARIATE ) you get r = – .192, p < .001. This confirms the hypothesis and gives evidence for the validity of the Dependence scale.
Think of another relationship that might support the validity of one of the scales, and then test your hypothesis using the data. You will need to submit:
Your validity hypothesis and a brief explanation about why you expect the hypothesis to be supported.
The results of your statistical test of your validity hypothesis.
Your conclusion about validity given the results of your statistical test.
Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.
You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.
Read moreEach paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.
Read moreThanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.
Read moreYour email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.
Read moreBy sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.
Read more